УТВЕРЖДАЮ

Руководитель РИИ СМ ФГУП «ВНИИМ им. Н.И. Менделеева»

«ВНИИМ им. Н.И. Менделеева»

« 2010г.

ПЛОТНОМЕРЫ 804

МЕТОДИКА ПОВЕРКИ МП № 2302-0051-2010

Руководитель лаборатории вязкости и плотности

Н.Г. Домостроева

«O2» декабря 2010 г.

Настоящая методика поверки распространяется на плотномеры 804, 804 Ex и 804 Bн (далее в тексте – плотномеры 804) (далее по тексту - плотномеры), выпускаемые по ТУ 4215-804-24172160-09.

Плотномеры 804 предназначены для непрерывного преобразования плотности жидкостей и газов в электрический выходной сигнал в составе систем регулирования и управления технологическими процессами, а также в составе систем измерения количества и качества жидкостей и газов.

Правила эксплуатации плотномеров 804 изложены в РЭ 4215-804-24172160-09 (далее по тексту – РЭ).

Настоящая методика поверки устанавливает методику первичной и периодической поверок плотномеров 804.

Настоящая методика поверки основана:

- для плотномеров 804, предназначенных для измерений плотности жидкости на непосредственном сличении результатов измерений плотности жидкости-компаратора выполненных при одинаковых условиях поверяемым плотномером 804 и эталонным лабораторным плотномером (анализатором плотности жидкости):
- для плотномеров 804, предназначенных для измерений плотности сжатого газа на сличении показаний плотномера с расчетным значением плотности газообразного азота при условиях измерений.

1 ОПЕРАЦИИ ПОВЕРКИ

- 1.1 При проведении поверки должны быть выполнены следующие операции:
- Внешний осмотр п.6.2;
- Опробование п.6.3;
- Определение абсолютной погрешности плотномера п.п.6.4 и 6.5.

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки Плотномеров 804 предназначенных для измерений плотности жидкости применяют средства измерений и вспомогательные средства, указанные в таблице1:

Таблица 1

Наименование средства поверки	Основные технические и метрологические характеристики средств поверки	
Плотномеры 804, предназначенные для измерений плотности жидкости		
Плотномер лабораторный типа DMA, моделей DMA4100, DMA4500, DMA5000, DMA HP или с характеристиками не хуже в комплекте со средствами введения пробы жидкости в измерительную ячейку	Диапазон измерений плотности не менее (620 - 1630) кг/м 3 , пределы абсолютной погрешности не более \pm 0,15 кг/м 3	
Термометр ртутный стеклянный лабораторный типа ТЛ-4 по ГОСТ 28498-90. Допускается применять электронные термометры типа ТЦМ 9210М или аналогичные с характеристиками не хуже	Диапазон измерений, °C: св.0 до плюс 100. Цена деления $0,1$ °C. Абсолютная погрешность, не более $\pm 0,2$ °C.	

Термостат жидкостный циркуляционный, типа «ТЕРМОТЕСТ-05-02» или с характеристиками не хуже (рисунок А.1)	Диапазон регулирования температур, °C: от минус 50 до плюс 50. Нестабильность поддержания температуры, не более $\pm 0,1$ °C.	
Стакан мерный из полипропилена или стекла	Вместимость 1000 см ³	
Поверочные жидкости-компараторы		
	(рекомендуемые)	
Гексан по ТУ 6-09-3375-78	диапазон плотности при 20°C (683-687) кг/м ³	
Спирт этиловый ГОСТ 18300-87	диапазон плотности при 20°C (789-820) кг/м ³	
Вода дистиллированная по ГОСТ 6709-72	номинальная плотность при 20 $^{0}{\rm C}$ 998 кг/м 3	
Перхлорэтилен по ТУ 6-01-956-86	диапазон плотности при 20^{0} С (1590-1630) кг/м ³	

Допускается применять другие поверочные жидкости-компараторы не агрессивные к материалам чувствительных элементов поверяемых и эталонных плотномеров с близкими номинальными значениями плотностей.

Допускается применять в качестве жидкости-компаратора отобранную пробу рабочей жидкости.

Плотномеры 804, предназначенные для измерений плотности газа	
Азот газообразный, повышенной чистоты по ГОСТ 9293-2006	ГСССД 4-78 Плотность, энтальпия, энтропия и изобарная теплоемкость жидкого и газообразного азота при температурах 70-1500К и давлениях 0,1-100 МПа
Датчик давления 415ДИ-25МПа/0,1- RS485 или с характеристиками не хуже	Верхний предел измерения 25,0МПа. Пределы перенастройки, МПа: 16,0; 10,0; 6,0; 4,0; 2,5; 1,6; 1,0. Допускаемые пределы основной погрешности измерения, не более ±0,1%.
Барометр анероидный типа БАММ-1	Цена деления 0,1кПа, погрешность, кПа, не более ±0,2.
Термометр ртутный стеклянный лабораторный типа ТЛ-4 по ГОСТ 28498-90. Допускается применять электронные термометры типа ТЦМ 9210М или аналогичные с характеристиками не	Диапазон измерений, °C: св.0 до плюс 100. Цена деления $0,1$ °C. Абсолютная погрешность, не более $\pm 0,2$ °C.
Испытательный стенд Т804.100 или аналогичный (рисунок А.2)	Рабочее абсолютное давление до 16МПа, диапазон рабочих температур от минус 40 до 85°C

Камера климатическая	гипа Espec PG-	
4КТ, или аналогичная с		
характеристиками	не хуже	

Диапазон регулирования температур, °C, от минус 70 до 100. Нестабильность поддержания температуры ± 0.5 °C.

Вспомогательное оборудование и материалы		
Источник постоянного тока типа Б5-8, Б5-45 или с характеристиками не хуже	Наибольшее значение напряжения на выходе 50 В. Допускаемое отклонение, не более ±0,5% от установленного значения напряжения.	
Вольтметр цифровой В7-73 по ГОСТ Р 51350-99, или с характеристиками не хуже	Верхний предел измерений напряжения постоянного тока 200В. Предел допускаемой основной погрешности измерения напряжения постоянного тока ±0,015% от U+2 единицы младшего разряда, где U - значение измеряемого напряжения. Цена единицы младшего разряда 100 мкВ при измерении напряжения постоянного тока в пределах 2 В.	
Адаптер 31811	Преобразователь RS232/RS485	
Адаптер 31812	Преобразователь RS485/USB	
Адаптер 31813	Преобразователь USART/RS232	
Адаптер 31814	Преобразователь USART/USB	
Дополнительное оснащение термостата	Столик (регулируемый) Крышка (установочная)	
Бумага фильтровальная марки ФБ или ФС	ГОСТ 12026-76	
Промывочные жидкости		
Уайт-спирит	ГОСТ 3134-78	
Вода дистиллированная	ГОСТ 6709-72	
Спирт этиловый ректификованный технический	ГОСТ 18300-87	
Ацетон технический 1сорт	ГОСТ 2768-84	
Эфир этиловый	ГОСТ 22300-76	

2.2 Все средства измерений, применяемые при поверке, должны иметь действующие свидетельства о поверке и (или) оттиски поверительных клейм.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- **3.1** При проведении поверки должны соблюдаться следующие требования безопасности:
 - Помещения, в которых проводят работы с нефтепродуктами, должны быть оснащены пожарной сигнализацией и средствами пожаротушения в соответствии с ГОСТ 12.4.009-83 и оснащены приточно-вытяжной вентиляцией;
 - Промывка растворителями рабочей (погружной) части плотномера и емкостей после удаления поверочных жидкостей должна производиться в вытяжном шкафу и при отсутствии нагревательных приборов;
 - При использовании поверочных жидкостей следует учитывать их класс опасности и применять соответствующие приемы безопасной работы и средства защиты.

 Необходимо соблюдать правила техники безопасности при работе с сосудами под давлением.

4 УСЛОВИЯ ПОВЕРКИ

- 4.1 При проведении поверки должны соблюдаться следующие условия:

- 3) Атмосферное давление в помещении 84÷106,7 кПа или 630÷800 мм рт. ст.;

- 6) Сопротивление нагрузки [кОм], не более, при поверке плотномера по выходному сигналу постоянного тока 4-20мА по формуле 1, не более:

$$R_{\rm H} = \frac{U - U_{\rm min}}{I_{\rm max}} + 0.05 \tag{1}$$

где $U_{min} = 12 B$; U - напряжение питания, <math>B; $I_{max} = 20 \text{ мA}$.

- 8) Частота сети, Гц. 50÷1;
- 9) Выдержка плотномера в помещении перед поверкой, час, не менее 2.
- 10) Сотрясения и вибрации термостата и плотномера во время выполнения измерений не допускаются.

5 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки должны быть выполнены следующие операции:

- **5.1** Плотномер используют в соответствии с Руководством по эксплуатации (далее по тексту РЭ) и при работе с ним на воздухе убеждаются в его работоспособности.
 - 5.2 Плотномер после включения следует выдержать не менее 2 минут.
- **5.3** Погружные части плотномера и термометра, стаканы для поверочных жидкостей, а также емкость и трубки испытательного стенда должны быть тщательно вымыты растворителем, спиртом, дистиллированной водой и просушены.
- **5.4** Столик в термостате должен быть отрегулирован по высоте до упора мерного стакана в крышку.
- **5.6** При поверке плотномеров с цифровым сигналом для подключения к компьютеру к выходу плотномера подключают соответствующий преобразователь:
- по интерфейсу RS485 RS485/RS232 или RS485/USB (например: портативный «Адаптер 31811» или «Адаптер 31812»);
- по интерфейсу USART USART/RS232 или USART/USB (например: портативный «Адаптер 31813» или «Адаптер 31814»).

Могут использоваться другие устройства для считывания информации и управления плотномерами по другим коммуникационным протоколам, предусмотренным технической документацией на плотномеры. Схемы подключения плотномеров для измерения выходного сигнала при проведении поверки приведены в приложении Б.

5.7 При поверке плотномеров с аналоговым сигналом следует привести диапазон сигнала в соответствие с диапазоном калибровки (0-160 или 620-1630 кг/м³) измерения плотности по методике, приведенной в РЭ 4215-804-24172160-2009 Приложение Е, п.2.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При внешнем осмотре плотномера 804 устанавливают:

- соответствие его внешнего вида технической документации и отсутствие видимых дефектов;

- наличие и состояние клеммных колодок и (или) разъемов для внешних соединений, клемм контроля выходного сигнала и др.;
- наличие и состояние дополнительных выходных устройств цифровых индикаторов и (или) других устройств, предусмотренных технической документацией на плотномер;
- наличие на корпусе плотномера таблички с маркировкой, соответствующей паспорту или документу, его заменяющему;
- наличие РЭ, паспорта или документа, его заменяющего, если это предусмотрено при поверке плотномера.

6.2 Опробование

При опробовании подключить и проверить исправность плотномера в соответствии с РЭ.

6.3 Определение погрешности плотномеров 804

- 6.3.1 Плотномеры 804, откалиброванные для измерения плотности жидкостей.
- **6.3.1.1** Определение погрешности плотномеров 804, откалиброванных для измерения плотности жидкостей, проводится при нормальных условиях по трем жидкостям компараторам с номинальными значениями плотностей, близких к началу, середине и концу откалиброванного диапазона измерения плотности для поверяемого плотномера. Схема установки для поверки плотномеров показана на рисунке A.1.

Плотномер и контрольный термометр должны размещаться на крышке термостата. Внутренний диаметр цилиндра с жидкостью-компаратором для установки поверяемого плотномера должна быть не менее 90мм.

6.3.1.2 Произвести определение погрешности плотномера в следующем порядке:

- 1) Заполнить чистый стакан первой жидкостью-компаратором и установить на столик термостата
- 2) Установить на горловину термостата крышку.
- 3) Установить на крышку плотномер и подключить в соответствии с документацией изготовителя по соответствующей схеме приложения Б.
- 4) Ввести в стакан термометр и подключить в соответствии с документацией изготовителя.
- 5) Включить термостат и задать температуру 20,00°С.
- 6) После стабилизации показаний термометра (20±0,1)°С зафиксировать показания приборов:
 - вольтметра для плотномера с аналоговым выходным сигналом 4-20мА;
 - монитора ПС для плотномера с цифровым выходным сигналом;
 - индикатора плотномера для плотномера с индикатором.
- Показания записать в протокол поверки.
- 7) Отобрать из измерительного цилиндра пробу жидкости-компаратора и выполнить измерения плотности пробы на эталонном лабораторном плотномере (анализаторе плотности) при температуре (20±0,1)°С в соответствии с требованиями Руководства по эксплуатации. Показания эталонного плотномера записать в протокол поверки.
- 8) Отключить питание эл.приборов и термостата, снять плотномер и термометр.
- 9) Тщательно промыть растворителем и просушить чувствительный элемент плотномера, термометр и измерительный цилиндр. Для ускорения просушки

допускается продувать оборудование струей сухого воздуха под давлением не более 0,03 МПа. Промывку и просушку выполнять при включенной вытяжной вентиляции.

10) Повторить операции по п.п. 1) \div 9) для второй и третей жидкостей-компараторов.

6.3.1.3 Обработка результатов измерений.

6.3.1.3.1 Абсолютную погрешность результата измерений плотности і-той жидкостикомпаратора плотномером с цифровым выходным сигналом или плотномером, снабженным индикатором вычисляют по формуле:

$$\pm \Delta_i = \rho_i - \rho_{sti} \tag{2}$$

где: Δ_i - абсолютная погрешность, кг/м³;

 ho_i - результат измерения плотности і-той жидкости-компаратора поверяемым плотномером; ho_{sti} - результат измерения плотности і-той жидкости-компаратора эталонным лабораторным плотномером.

Абсолютная погрешность плотномера для всех трех точек измерений не должна превышать $\pm 0.5 (1.0) \, \text{кг/m}^3$.

6.3.1.3.2 Нормирующие значение относительной погрешности δ , % результата измерений плотности і-той жидкости-компаратора плотномером с аналоговым выходным сигналом, откалиброванным для измерений в поддиапазоне плотности от ρ_{\min} кг/м³ до ρ_{\max} кг/м³, вычисляют по формуле:

$$\delta = \pm \left(\frac{\pm \Delta_{nor}}{\rho_{\text{max}} - \rho_{\text{min}}} \times 100 + 0.05\right), \% (от величины откалиброванного поддиапазона плотности) (3)$$

где: δ - нормирующие значение относительной погрешности δ , %;

 $\pm \Delta_{\it nor}$ - нормированная абсолютная погрешность для поверяемого плотномера (0,5;1,0) кг/м³;

 ρ_{\min} - нижняя граница откалиброванного поддиапазона плотности, кг/м $^3;$

 $\rho_{\rm max}$ - верхняя граница откалиброванного поддиапазона плотности, кг/м 3

Расчетное значение аналогового выходного сигнала плотномера I_{Ri} , мА, соответствующее результату измерения плотности і-той жидкости-компаратора эталонным лабораторным плотномером определяют по формуле:

$$I_{Ri} = I_{\min} + \frac{I_{\max} - I_{\min}}{\rho_{\max} - \rho_{\min}} \cdot (\rho_{sti} - \rho_{\min}), \text{ MA}$$

$$(4)$$

где: I_{Ri} - расчетное значение аналогового выходного сигнала плотномера I_{Ri} , мА;

 I_{min} - значение аналогового выходного сигнала плотномера, соответствующее ho_{min} ;

 I_{max} - значение аналогового выходного сигнала плотномера, соответствующее ρ_{max} .

Абсолютную погрешность выходного сигнала плотномера при измерении плотности i-той жидкости-компаратора определяют по формуле:

$$\Delta I_i = \pm (I_i - I_{Ri}), MA \tag{5}$$

где: ΔI_i - абсолютная погрешность выходного сигнала, мА;

 ${
m I}_i$ - измеренное значение выходного сигнала при измерении плотности і-той жидкости-компаратора

Для всех трех точек измерений абсолютная погрешность выходного сигнала не должна превышать значения, определяемого по формуле:

$$\Delta I_{st} = \pm \frac{I_{\text{max}} - I_{\text{min}}}{100} \cdot \delta , \text{ MA}$$
 (6)

6.3.2 Определение погрешности плотномера, настроенного на газы, проводить при нормальных условиях по эталонному газу азоту на стенде Т 804.100, как показано на рисунке А.2 (или аналогичном).

Определение производится при температуре $20\pm0,1^{\circ}$ С (293°К) в термокамере и стабилизации температуры в испытательной емкости $\mathbf{t_i}^{\circ}$ С (колебания не более $\pm0,1^{\circ}$ С в течении 5 минут, контролировать по термометру сопротивления).

- **6.3.2.1** Произвести определение абсолютной погрешности плотномера в следующем порядке:
- 1) Установить плотномер в емкость испытательного стенда и подключить в соответствии с документацией изготовителя по соответствующей схеме приложения Б.
- 2) Подключить термометр сопротивления к вольтметру, настроить вольтметр на измерение температуры в соответствии с руководством по эксплуатации прибора.
 - 3) Включить термокамеру с уставкой температуры $T_1 = 20$ °C (293°K)
- 4) Включить вакуумный насос и создать разрежение в емкости абсолютное давление $P_{\theta} < 0.5$ кПа.
- 5) После стабилизации температуры в емкости снять показания приборов и плотномера и записать в протокол проверки.
 - 6) Подать в емкость газ под абсолютным давлением $P_I = 0,1$ [МПа] $\pm 10\%$.
- 7) После стабилизации температуры $\mathbf{t_1}$ и давления $\mathbf{P_1}$ в емкости снять показания приборов и плотномера и записать в протокол проверки.
- 8) Повторить операции по п.п. 6 и 7 для промежуточных значений давления $P_2 \div P_4$ и $P_5 = 15,1$ [МПа] $\pm 10\%$.
- 9) Рассчитать по таблицам ГСССД значения плотности газа для $\mathbf{t_i}$ [°K] и $\mathbf{P_i}$ [МПа]. зафиксированных в протоколе.
 - 6.3.2.2 Обработка результатов измерений.
- **6.3.2.2.1** Абсолютную погрешность результата измерений плотности азота для температуры $\mathbf{t_i}$ и давления $\mathbf{P_i}$ плотномером с цифровым выходным сигналом или плотномером, снабженным индикатором вычисляют по формуле:

$$\pm \Delta_i = \rho_i - \rho_{sti} \tag{7}$$

где: Δ_i - абсолютная погрешность, кг/м³;

 ρ_i - результат измерения плотности азота для температуры $\mathbf{t_i}$ и давления $\mathbf{P_i}$;

 ρ_{sti} - результат расчета плотности азота температуры $\mathbf{t_i}$ и давления $\mathbf{P_i}$ по таблицам ГСССД. Абсолютная погрешность плотномера для всех трех точек измерений не должна превышать $\pm 0.5 \ (1.0) \ \mathrm{kr/m}^3$.

6.3.2.2.2 Нормирующие значение относительной погрешности δ , % результата измерений плотности азота для температуры $\mathbf{t_i}$ и давления $\mathbf{P_i}$ плотномером с аналоговым выходным сигналом, откалиброванным для измерений в поддиапазоне плотности от ρ_{\min} кг/м 3 до ρ_{\max} кг/м 3 , вычисляют по формуле:

$$\delta = \pm \left(\frac{\pm \Delta_{nor}}{\rho_{\text{max}} - \rho_{\text{min}}} \times 100 + 0{,}05\right), \% \text{ (от величины откалиброванного поддиапазона}$$
 плотности) (8)

где: δ - нормирующие значение относительной погрешности δ , %;

 $\pm \Delta_{\it nor}$ - нормированная абсолютная погрешность для поверяемого плотномера (0,5;1,0) кг/м³;

 ρ_{\min} - нижняя граница откалиброванного поддиапазона плотности, кг/м $^3;$

 $\rho_{\rm max}$ - верхняя граница откалиброванного поддиапазона плотности, кг/м $^3.$

Расчетное значение аналогового выходного сигнала плотномера I_{Ri} , мА, соответствующее результату измерения плотности і-той жидкости-компаратора эталонным лабораторным плотномером определяют по формуле:

$$I_{Ri} = I_{\min} + \frac{I_{\max} - I_{\min}}{\rho_{\max} - \rho_{\min}} \cdot (\rho_{sti} - \rho_{\min}), \text{ MA}$$

$$(9)$$

где: I_{Ri} - расчетное значение аналогового выходного сигнала плотномера I_{Ri} , мА;

 I_{\min} - значение аналогового выходного сигнала плотномера, соответствующее ho_{\min} ;

 $\rm I_{max}$ - значение аналогового выходного сигнала плотномера, соответствующее ρ_{max} .

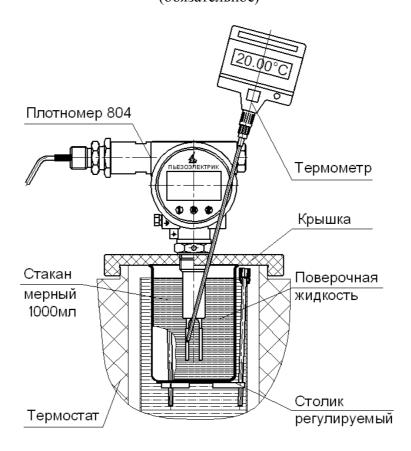
Абсолютную погрешность выходного сигнала плотномера при измерении плотности i-той жидкости-компаратора определяют по формуле:

$$\Delta I_i = \pm (I_i - I_{Ri}), \text{ MA}$$
(10)

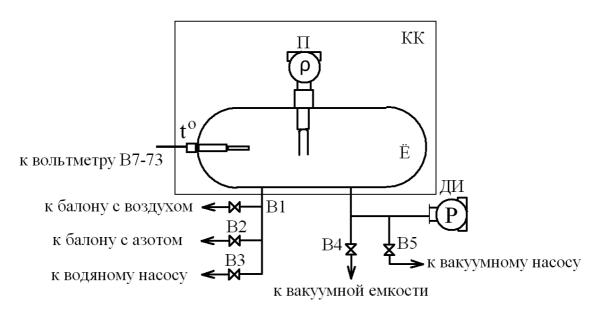
где: ΔI_i - абсолютная погрешность выходного сигнала, мА;

 ${\rm I}_{i}$ - измеренное значение выходного сигнала при измерении плотности і-той жидкости-компаратора

Для всех трех точек измерений абсолютная погрешность выходного сигнала не должна превышать значения, определяемого по формуле:


$$\Delta I_{st} = \pm \frac{I_{\text{max}} - I_{\text{min}}}{100} \cdot \delta, \text{ MA}$$
 (11)

Результаты вычислений занести в протокол поверки.


7.ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 Результаты поверки оформляют протоколом по форме, приведенной в Приложении.
- 7.2 При положительных результатах поверки оформляют свидетельство о поверке по форме, приведенной в ПР 50.2.006.
- 7.3 При отрицательных результатах поверки Анализатор к эксплуатации не допускают, пломбу и свидетельство о поверке аннулируют и выдают извещение о непригодности с указанием причин по форме, приведенной в ПР 50.2.006.

Приложение А (обязательное)

Рисунок А.1 – Схема стенда для проверки плотномера эталонными (поверочными) жидкостями

 $\mathbf{t^o}$ – термометр сопротивления

П – испытываемый плотномер 804

КК – камера климатическая (термокамера)

Ё – ёмкость

В1 – В5 – вентиль игольчатый ВД250

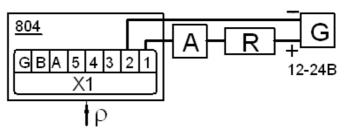
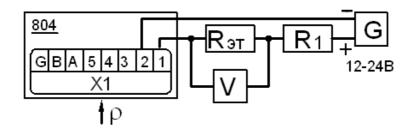

ДИ – датчик абсолютного давления

Рисунок А.2 – Схема испытательного стенда Т 804.100

Приложение Б


(обязательное)

Схемы включения плотномеров при поверке

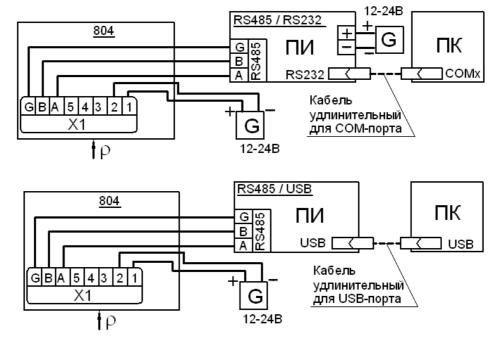

- ρ входная измеряемая плотность
- 804 поверяемый плотномер;
- **G** источник питания постоянного тока (например, один из указанных в таблице 2, если иное не указано в технической документации);
- А цифровой миллиамперметр или универсальный вольтмиллиамперметр;
- **R** нагрузочное сопротивление, например, резистор МЛТ или магазин сопротивлений, указанный в таблице 2; значение сопротивления в соответствии с условиями поверки (п. 4.1).

Рисунок Б.1 - Схема включения плотномера с аналоговым выходным сигналом постоянного тока 4-20мА при измерении выходного сигнала непосредственно миллиамперметром.

- V цифровой вольтметр, указанный в таблице 2;
- ${f R_1}$ нагрузочное сопротивление указанный в таблице 2 магазин сопротивлений. При установке значения нагрузочного сопротивления необходимо учитывать эталонное сопротивление т.к. ${f R_{2T}}$ + ${f R_1}$ = ${f R}$, где значение ${f R}$ сопротивления нагрузки при поверке указано в п. 4.1.
- ${f R}_{\mbox{\scriptsize эт}}$ эталонное сопротивление, например, образцовая катушка сопротивления, указанная в таблице 2.

Рисунок Б.2 - Схема включения плотномера с аналоговым выходным сигналом постоянного тока 4-20мА при измерении выходного сигнала по падению напряжения на эталонном сопротивлении.

ПК – компьютер; **ПИ** – преобразователь интерфейса

Рисунок Б.3 - Схемы включения плотномера с цифровым выходным сигналом на базе интерфейса RS485 при считывании информации по цифровому каналу с помощью преобразователя RS485/232RS или RS232/USB для связи с персональным компьютером.

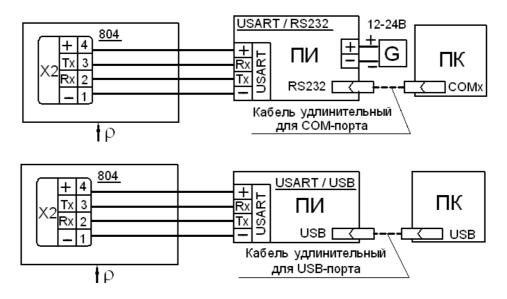


Рисунок Б.4 - Схемы включения плотномера с цифровым выходным сигналом на базе интерфейса USART при считывании информации по цифровому каналу с помощью преобразователя USART/RS485 или USART/USB для связи с персональным компьютером

Приложение В

(справочное)

Методика проверки и настройки аналогового выходного сигнала

- **1** В данном приложении приведена методика проверки (режимы 1 и 2) и изменения (режимы 2.1 и 2.2) текущих параметров настройки диапазона аналогового выходного сигнала плотномера при помощи дисплея и кнопок на лицевой панели в соответствии с «Плотномер 804. Руководство по эксплуатации» Приложение Е.
- **2** Для изменения диапазона измерений т.е. изменения значений плотности, соответствующих 4мА и 20мА выходного аналогового сигнала произвести операции в следующем порядке:
 - 2.1 собрать схему по рисунку Б.1 или Б.2, плотномер работает в основном режиме (1);

<u>Индикация:</u> Основное табло – текущая плотность ρ , кг/м³.

Левое малое табло – Верхний предел измерения ρ_{max} , кг/м³.

Правое малое табло – Нижний предел измерения ρ_{min} , кг/м³.

Дополнительные символы: «MAX», «MIN»

2.2 кратким нажатием кнопки «1» перевести плотномер в режим контроля диапазона измерений (2);

<u>Индикация</u>: Основное табло — символ « dP ».

Левое малое табло – Верхний предел измерения.

Правое малое табло – Нижний предел измерения.

Дополнительные символы: «MAX», «MIN»

2.3 кратким нажатием кнопки «2» перевести плотномер в режим изменения нижнего предела измерений (2.1):

Индикация: Основное табло — символ « dP ».

Левое малое табло – Верхний предел измерения.

Правое малое табло – Нижний предел измерения - изменяемое значение.

Дополнительные символы: «MAX», прерывистое отображение «**MIN**»

2.4 установить нижний предел измерения плотности (0 или 620) в порядке:

Изменение параметра:

Увеличение значения параметра на 1

-краткое нажатие кнопки «1»

Ускоренное увеличение значения параметра

- длительное нажатие кнопки «1»

Уменьшение значения параметра на 1

-краткое нажатие кнопки «3»

Ускоренное уменьшение значения параметра

- длительное нажатие кнопки «3»

2.5 кратким нажатием кнопки «2» перевести плотномер в режим изменения верхнего предела измерений (2.2), при этом **измененное значение** нижнего предела измерения плотности сохраняется в памяти прибора:

<u>Индикация:</u> Основное табло — символ « dP ».

Левое малое табло – Верхний предел измерения - изменяемое значение.

Правое малое табло – Нижний предел измерения.

Дополнительные символы: «MIN», прерывистое отображение «**MAX**»

2.6 установить верхний предел измерения плотности (160 или 1630) в порядке, указанном в п.**2.4**;

2.7 кратким нажатием кнопки «2» перевести плотномер в режим контроля диапазона измерений (2), при этом **измененное значение** верхнего предела измерения плотности сохраняется в памяти прибора:

<u>Индикация</u>: Основное табло – символ « **dP** ».

Левое малое табло – **Установленный** верхний предел измерения.
Правое малое табло – **Установленный** нижний предел измерения.
Дополнительные символы: «MAX», «MIN»

2.8 кратким нажатием кнопки «3» перевести плотномер в основной режим (1)

<u>Индикация:</u> Основное табло — текущая плотность ρ , $\kappa z/m^3$.

Левое малое табло — Верхний предел измерения ρ_{max} , $\kappa z/m^3$.

Правое малое табло — Нижний предел измерения ρ_{min} , $\kappa z/m^3$.

Дополнительные символы: «MAX», «MIN»

По окончании поверки следует восстановить исходный (п.2.1) диапазон аналогового выходного сигнала плотномера .

Внимание: при изменении диапазона измерений изменяются численные значения пределов допускаемой основной погрешности измерения по аналоговому сигналу γ , % (п.п.**6.3.1.3.2**, **6.3.2.2.2**) с сохранением их по цифровым сигналам. Пересчет значений производится по формулам (3) и (8) стр.3, 4.